Minimal Riesz Energy on the Sphere for Axis-supported External Fields

نویسندگان

  • J. S. BRAUCHART
  • P. D. DRAGNEV
چکیده

We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz potentials |x−y| with d−2 ≤ s < d. For a given axis-supported external field, the support and the density of the corresponding extremal measure on S is determined. The special case s = d − 2 yields interesting phenomena, which we investigate in detail. A weak asymptotic analysis is provided as s → (d − 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riesz extremal measures on the sphere for axis-supported external fields

We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz potentials |x−y| with d−2 ≤ s < d. For a given axis-supported external field, the support and the density of the corresponding extremal measure on S i...

متن کامل

Riesz spherical potentials with external elds and minimal energy points separation

In this paper we consider the minimal energy problem on the sphere S for Riesz potentials with external …elds. Fundamental existence, uniqueness, and characterization results are derived about the associated equilibrium measure. The discrete problem and the corresponding weighted Fekete points are investigated. As an application we obtain the separation of the minimal senergy points for d 2 < s...

متن کامل

MINIMAL RIESZ ENERGY POINT CONFIGURATIONS FOR RECTIFIABLE d-DIMENSIONAL MANIFOLDS

We investigate the energy of arrangements of N points on a rectifiable d-dimensional manifold A ⊂ Rd′ that interact through the power law (Riesz) potential V = 1/r, where s > 0 and r is Euclidean distance in R ′ . With Es(A, N) denoting the minimal energy for such N -point configurations, we determine the asymptotic behavior (as N → ∞) of Es(A, N) for each fixed s ≥ d. Moreover, if A has positi...

متن کامل

Minimum Separation of the Minimal Energy Points on Spheres in Euclidean Spaces

Let Sd denote the unit sphere in the Euclidean space Rd+1 (d ≥ 1). Let N be a natural number (N ≥ 2), and let ωN := {x1, . . . , xN} be a collection of N distinct points on Sd on which the minimal Riesz s−energy is attained. In this paper, we show that the points x1, . . . , xN are well-separated for the cases d− 1 ≤ s < d.

متن کامل

The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere

We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz s-energy of N points on the unit sphere in Rd+1, d ≥ 1. The conjectures are based on analytic continuation assumptions (with respect to s) for the coefficients in the asymptotic expansion (as N →∞) of the optimal s-energy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009